Running in pipeline mode

Anime can be run in pipeline mode with little to no user interaction once the pipeline has started execution. This mode can include everything from creating a new data set from scratch to computing coherency matrices, computing and applying instrumental models to complex visibilities, and writing gain tables and making diagnostic plots.

Note

Some steps listed here involve the use of external software such as WSClean and hence this script is provided as a "passive" example that is not executed in the deployed documentation but can be run by the user as a pipeline on their local machines.

Import the necessary modules

using ArgParse
using Logging
using HDF5
using YAML
using Anime

Set some convenient command-line options for the script.

# create argument parser
function create_parser()
    s = ArgParseSettings()

    @add_arg_table s begin
        "config"#
            help = "Input YAML file name with observation configuration"
            required = true
        "outdir"
            help = "Directory to hold output products"
            required = true
        "--clobber", "-c"
            action = :store_true
            help = "Delete and create output directory anew"
    end

    return parse_args(s)
end

# create parser
args = create_parser()

Create a new working directory within which all output products will be stored.

# change working directory to the user-specified output directory
startdir = pwd() # store original working directory
config = abspath(startdir, args["config"])
outdir = abspath(startdir, args["outdir"])

# create a new empty output directory
if isdir(outdir)
    if args["clobber"]
        run(`rm -rf $(outdir)`)
	mkdir(outdir)
    else
	error("$outdir exists but -c option is not given 🤷")
    end
else
    mkdir(outdir)
end
@info("Changing working directory to $outdir")
cd(outdir)

Now we load the YAML file containing the observation and instrument modelling parameters. While this is not mandatory, it is far easier to keep track of the input settings when a configuration file is used.

y = YAML.load_file(config, dicttype=Dict{String,Any}) # load YAML config file
h5file = "insmodel.h5"

Generate a new data set from either the YAML file observation parameters or a previously existing UVFITS file. An ASCII file containing station information (Site-and-station-parameters) is necessary in both cases. Also see Creating-data-sets.

if y["mode"] == "manual"
    msfromconfig(y["msname"], y["mode"], y["stations"], y["casaanttemplate"], y["spw"]["centrefreq"], y["spw"]["bandwidth"], y["spw"]["channels"],
    y["source"], y["starttime"], y["exposure"], y["scans"], y["scanlengths"], y["scanlag"]; autocorr=y["autocorr"], telescopename=y["telescopename"],
    feed=y["feed"], shadowlimit=y["shadowlimit"], elevationlimit=y["elevationlimit"], stokes=y["stokes"], delim=",", ignorerepeated=false)
elseif y["mode"] == "uvfits"
    msfromuvfits(y["uvfits"], y["msname"], y["mode"])
else
    error("MS generation mode '$(y["mode"])' not recognised 🤷")
end

Once a new MS has been generated, we can populate the source coherency in the DATA column using any visibility prediction software. Here, we use WSClean to compute source coherency (also see Compute-coherency-matrix):

run_wsclean(y["msname"], y["skymodel"], y["polarized"], y["channelgroups"], y["osfactor"])

Now we load the data into a custom struct:

obs = loadms(y["msname"], y["stations"], Int(y["corruptseed"]), Int(y["troposphere"]["tropseed"]), y["troposphere"]["wetonly"], y["correff"],
y["troposphere"]["attenuate"], y["troposphere"]["skynoise"], y["troposphere"]["meandelays"], y["troposphere"]["turbulence"],
y["instrumentalpolarization"]["visibilityframe"], y["instrumentalpolarization"]["mode"], y["pointing"]["interval"], y["pointing"]["scale"],
y["pointing"]["mode"], y["stationgains"]["mode"], y["bandpass"]["bandpassfile"], delim=",", ignorerepeated=false)

We can now start adding the individual instrument models. For more details, see Compute-instrument-models.

y["troposphere"]["enable"] && troposphere!(obs, h5file)
y["instrumentalpolarization"]["enable"] && instrumentalpolarization!(obs, h5file=h5file)
y["pointing"]["enable"] && pointing!(obs, h5file=h5file)
y["stationgains"]["enable"] && stationgains!(obs, h5file=h5file)
y["bandpass"]["enable"] && bandpass!(obs, h5file=h5file)
y["thermalnoise"]["enable"] && thermalnoise!(obs, h5file=h5file)

Compute weights, write everything back to disk, and convert to uvfits. Note that the conversion to uvfits must be done after exiting the main pipeline script, since Casacore does not allow other modules (such as python casatasks) to access the MS in the same session.

postprocessms(obs, h5file=h5file)
mstouvfits(y["msname"], "test.uvfits", "corrected")

Change back to original working directory and exit

cd(startdir)
@info("Anime.jl observation completed successfully 📡")

This page was generated using Literate.jl.